In the latest issue:

Real Men Go to Tehran

Adam Shatz

What Trump doesn’t know about Iran

Patrick Cockburn

Kaiser Karl V

Thomas Penn

The Hostile Environment

Catherine Hall

Social Mobilities

Adam Swift

Short Cuts: So much for England

Tariq Ali

What the jihadis left behind

Nelly Lahoud

Ray Strachey

Francesca Wade

C.J. Sansom

Malcolm Gaskill

At the British Museum: ‘Troy: Myth and Reality’

James Davidson

Poem: ‘The Lion Tree’

Jamie McKendrick

SurrogacyTM

Jenny Turner

Boys in Motion

Nicholas Penny

‘Trick Mirror’

Lauren Oyler

Diary: What really happened in Yancheng?

Long Ling

Close

Terms and Conditions

These terms and conditions of use refer to the London Review of Books and the London Review Bookshop website (www.lrb.co.uk — hereafter ‘LRB Website’). These terms and conditions apply to all users of the LRB Website ("you"), including individual subscribers to the print edition of the LRB who wish to take advantage of our free 'subscriber only' access to archived material ("individual users") and users who are authorised to access the LRB Website by subscribing institutions ("institutional users").

Each time you use the LRB Website you signify your acceptance of these terms and conditions. If you do not agree, or are not comfortable with any part of this document, your only remedy is not to use the LRB Website.


  1. By registering for access to the LRB Website and/or entering the LRB Website by whatever route of access, you agree to be bound by the terms and conditions currently prevailing.
  2. The London Review of Books ("LRB") reserves the right to change these terms and conditions at any time and you should check for any alterations regularly. Continued usage of the LRB Website subsequent to a change in the terms and conditions constitutes acceptance of the current terms and conditions.
  3. The terms and conditions of any subscription agreements which educational and other institutions have entered into with the LRB apply in addition to these terms and conditions.
  4. You undertake to indemnify the LRB fully for all losses damages and costs incurred as a result of your breaching these terms and conditions.
  5. The information you supply on registration to the LRB Website shall be accurate and complete. You will notify the LRB promptly of any changes of relevant details by emailing the registrar. You will not assist a non-registered person to gain access to the LRB Website by supplying them with your password. In the event that the LRB considers that you have breached the requirements governing registration, that you are in breach of these terms and conditions or that your or your institution's subscription to the LRB lapses, your registration to the LRB Website will be terminated.
  6. Each individual subscriber to the LRB (whether a person or organisation) is entitled to the registration of one person to use the 'subscriber only' content on the web site. This user is an 'individual user'.
  7. The London Review of Books operates a ‘no questions asked’ cancellation policy in accordance with UK legislation. Please contact us to cancel your subscription and receive a full refund for the cost of all unposted issues.
  8. Use of the 'subscriber only' content on the LRB Website is strictly for the personal use of each individual user who may read the content on the screen, download, store or print single copies for their own personal private non-commercial use only, and is not to be made available to or used by any other person for any purpose.
  9. Each institution which subscribes to the LRB is entitled to grant access to persons to register on and use the 'subscriber only' content on the web site under the terms and conditions of its subscription agreement with the LRB. These users are 'institutional users'.
  10. Each institutional user of the LRB may access and search the LRB database and view its entire contents, and may also reproduce insubstantial extracts from individual articles or other works in the database to which their institution's subscription provides access, including in academic assignments and theses, online and/or in print. All quotations must be credited to the author and the LRB. Institutional users are not permitted to reproduce any entire article or other work, or to make any commercial use of any LRB material (including sale, licensing or publication) without the LRB's prior written permission. Institutions may notify institutional users of any additional or different conditions of use which they have agreed with the LRB.
  11. Users may use any one computer to access the LRB web site 'subscriber only' content at any time, so long as that connection does not allow any other computer, networked or otherwise connected, to access 'subscriber only' content.
  12. The LRB Website and its contents are protected by copyright and other intellectual property rights. You acknowledge that all intellectual property rights including copyright in the LRB Website and its contents belong to or have been licensed to the LRB or are otherwise used by the LRB as permitted by applicable law.
  13. All intellectual property rights in articles, reviews and essays originally published in the print edition of the LRB and subsequently included on the LRB Website belong to or have been licensed to the LRB. This material is made available to you for use as set out in paragraph 8 (if you are an individual user) or paragraph 10 (if you are an institutional user) only. Save for such permitted use, you may not download, store, disseminate, republish, post, reproduce, translate or adapt such material in whole or in part in any form without the prior written permission of the LRB. To obtain such permission and the terms and conditions applying, contact the Rights and Permissions department.
  14. All intellectual property rights in images on the LRB Website are owned by the LRB except where another copyright holder is specifically attributed or credited. Save for such material taken for permitted use set out above, you may not download, store, disseminate, republish, post, reproduce, translate or adapt LRB’s images in whole or in part in any form without the prior written permission of the LRB. To obtain such permission and the terms and conditions applying, contact the Rights and Permissions department. Where another copyright holder is specifically attributed or credited you may not download, store, disseminate, republish, reproduce or translate such images in whole or in part in any form without the prior written permission of the copyright holder. The LRB will not undertake to supply contact details of any attributed or credited copyright holder.
  15. The LRB Website is provided on an 'as is' basis and the LRB gives no warranty that the LRB Website will be accessible by any particular browser, operating system or device.
  16. The LRB makes no express or implied representation and gives no warranty of any kind in relation to any content available on the LRB Website including as to the accuracy or reliability of any information either in its articles, essays and reviews or in the letters printed in its letter page or material supplied by third parties. The LRB excludes to the fullest extent permitted by law all liability of any kind (including liability for any losses, damages or costs) arising from the publication of any materials on the LRB Website or incurred as a consequence of using or relying on such materials.
  17. The LRB excludes to the fullest extent permitted by law all liability of any kind (including liability for any losses, damages or costs) for any legal or other consequences (including infringement of third party rights) of any links made to the LRB Website.
  18. The LRB is not responsible for the content of any material you encounter after leaving the LRB Website site via a link in it or otherwise. The LRB gives no warranty as to the accuracy or reliability of any such material and to the fullest extent permitted by law excludes all liability that may arise in respect of or as a consequence of using or relying on such material.
  19. This site may be used only for lawful purposes and in a manner which does not infringe the rights of, or restrict the use and enjoyment of the site by, any third party. In the event of a chat room, message board, forum and/or news group being set up on the LRB Website, the LRB will not undertake to monitor any material supplied and will give no warranty as to its accuracy, reliability, originality or decency. By posting any material you agree that you are solely responsible for ensuring that it is accurate and not obscene, defamatory, plagiarised or in breach of copyright, confidentiality or any other right of any person, and you undertake to indemnify the LRB against all claims, losses, damages and costs incurred in consequence of your posting of such material. The LRB will reserve the right to remove any such material posted at any time and without notice or explanation. The LRB will reserve the right to disclose the provenance of such material, republish it in any form it deems fit or edit or censor it. The LRB will reserve the right to terminate the registration of any person it considers to abuse access to any chat room, message board, forum or news group provided by the LRB.
  20. Any e-mail services supplied via the LRB Website are subject to these terms and conditions.
  21. You will not knowingly transmit any virus, malware, trojan or other harmful matter to the LRB Website. The LRB gives no warranty that the LRB Website is free from contaminating matter, viruses or other malicious software and to the fullest extent permitted by law disclaims all liability of any kind including liability for any damages, losses or costs resulting from damage to your computer or other property arising from access to the LRB Website, use of it or downloading material from it.
  22. The LRB does not warrant that the use of the LRB Website will be uninterrupted, and disclaims all liability to the fullest extent permitted by law for any damages, losses or costs incurred as a result of access to the LRB Website being interrupted, modified or discontinued.
  23. The LRB Website contains advertisements and promotional links to websites and other resources operated by third parties. While we would never knowingly link to a site which we believed to be trading in bad faith, the LRB makes no express or implied representations or warranties of any kind in respect of any third party websites or resources or their contents, and we take no responsibility for the content, privacy practices, goods or services offered by these websites and resources. The LRB excludes to the fullest extent permitted by law all liability for any damages or losses arising from access to such websites and resources. Any transaction effected with such a third party contacted via the LRB Website are subject to the terms and conditions imposed by the third party involved and the LRB accepts no responsibility or liability resulting from such transactions.
  24. The LRB disclaims liability to the fullest extent permitted by law for any damages, losses or costs incurred for unauthorised access or alterations of transmissions or data by third parties as consequence of visit to the LRB Website.
  25. While 'subscriber only' content on the LRB Website is currently provided free to subscribers to the print edition of the LRB, the LRB reserves the right to impose a charge for access to some or all areas of the LRB Website without notice.
  26. These terms and conditions are governed by and will be interpreted in accordance with English law and any disputes relating to these terms and conditions will be subject to the non-exclusive jurisdiction of the courts of England and Wales.
  27. The various provisions of these terms and conditions are severable and if any provision is held to be invalid or unenforceable by any court of competent jurisdiction then such invalidity or unenforceability shall not affect the remaining provisions.
  28. If these terms and conditions are not accepted in full, use of the LRB Website must be terminated immediately.
Close

The business​ of science is intensely frustrating. Most experiments fail, most great ideas come to nothing, and most genuine discoveries turn out to be of modest importance. Years of effort can easily be wasted on what turns out to be a mirage. In biology, we usually fail for the dullest of reasons: a test wasn’t as specific as we thought, a wondrous result proved to be a simple mistake, the supposedly seminal paper on which we relied was bogus. Faced with an avalanche of failure, rare advances of limited importance are to be cherished. With CRISPR-Cas9, the gene-editing technique that has transformed molecular biology, many scientists were aiming to produce just this sort of solid result and instead discovered something world-changing.

In 1915, the English microbiologist Frederick Twort reported that some of his bacterial colonies had ‘glassy’ areas, where dead bacteria had burst open. He discovered that he could transmit the glassy appearance between colonies, and that the agent responsible could pass through porcelain filters, which indicated that it was much smaller than a bacterium. Two years later, the French-Canadian scientist Félix d’Herelle made a similar discovery while attempting to turn maple syrup into alcohol. After working out that these agents – viruses that d’Herelle called bacteriophages – could kill bacteria, he turned his attention to using them as a therapy for bacterial infection. He got as far as treating a case of dysentery in a chicken, but the therapy still hasn’t been effective in humans, and antibiotics subsequently made the approach seem redundant. It’s quite possible that antibiotic resistance will make bacteriophage treatment important once again, but for a long time bacteriophages were a scientific backwater.

In 1993, Francisco Mojica, working in a literal backwater, made the first in a series of curious discoveries while studying bacteria that live in Spanish swamps. He found that they contained repeated sequences of DNA that didn’t correspond to anything previously seen. The sequences occurred at regular intervals in the genome and read the same forwards and backwards: he called them ‘clustered, regularly interspersed, short palindromic repeats’, or CRISPR. DNA of similar structure had been discovered in several other bacterial species; Japanese researchers had spotted it in E.coli in 1987, for example. The sequences did not resemble one another, but they were like sequences from bacteriophages, which suggested that their function was to fight off these invading viruses. This was a very important advance but didn’t attract the attention it deserved until 2007, when microbiologists at Danisco – a once Danish dairy now owned by the American conglomerate Dow Dupont – provided the first experimental evidence that the CRISPR system enables bacteria to ‘remember’ viruses that infected them. Their research, which clearly had significance beyond industrial yoghurt production, was published in Science.

Immunological memory, the ability to respond more vigorously to an infection the second time round, had previously been thought to occur only in vertebrates. It’s the reason people usually only get chickenpox once, and that vaccination is effective. The way it works in bacteria is completely different from the way it works in humans and other animals. We rely on recognising the proteins from bacteria and viruses as different from our own; bacteria recognise the DNA of their bacteriophage aggressors. They can capture and copy a piece of the invading phage DNA. This copy is inserted into the bacterial genome as a CRISPR sequence. The bacteria then use this DNA as a template to allow them to recognise similar sequences in invading phages.

DNA is a very stable molecule used by all organisms (except some viruses) to store genetic information. Its structure – two complementary strands entwined in a double helix – allows it to replicate itself: the two strands separate, and each is used as a template to create a new version of the other, making it possible for a cell to divide into two identical daughter cells. DNA is also used as a template for producing RNA, a less stable molecule that can perform all sorts of functions within the cell. One of its important roles is as a messenger: it is the chemical intermediary between genes and the proteins they make. The DNA genetic template instructs the production of messenger RNA, which can be decrypted by a molecular machine called a ribosome to form a protein. This is the central dogma of molecular biology: DNA makes RNA makes protein. In the case of CRISPR sequences, however, the RNA does not encode a protein. Instead, since it has been copied from an invading bacteriophage’s DNA, it forms a perfectly complementary portion of RNA to any similar phage’s genome. The bacteria also produce an enzyme called Cas9 (short for ‘CRISPR-associated protein 9’) which can cleave DNA, but is inactive unless it is bound to a CRISPR-generated RNA molecule that has found a perfectly complementary strand of DNA. In this case it can break the backbone of the invading DNA, chopping it to pieces. The CRISPR-generated RNA effectively guides the Cas9 to the section of the bacteriophage’s DNA that it matches. This means we can use guide RNA and Cas9 as a precise way of cutting DNA at a particular spot.

Various methods of cutting DNA in a test tube have been available for decades, but CRISPR makes it easily programmable within mammalian cells. We can control the production of the guide RNAs, and since Cas9 isn’t as toxic as you might expect there’s remarkably little collateral damage. When we target a cellular gene with CRISPR, the gene keeps being cut, and the cell keeps repairing the cut. But eventually the cell will make an error, and accidentally delete a bit of DNA (usually a single base pair). That destroys the perfect complementarity required for the guide RNA to recognise the targeted gene, so the Cas9 stops chopping. It also alters the genetic code so that instead of the correct protein, the ribosome that decodes the message gets a signal to stop. If you successfully target the beginning of a gene, no coherent protein can be produced – the gene is ‘knocked out’.

I spent a full year of my PhD trying and failing to knock out a gene in a chicken cell line (at that point, 15 or so years ago, the state of the art). With CRISPR this would take a few weeks, and I could choose any cell type I liked. It’s often helpful to find out what happens if a gene is missing in order to understand that gene’s biological purpose. If patients without a particular gene succumb easily to viruses, for example, it’s a fair bet that the gene is involved in immune response. One of the things my laboratory is working on at the moment is the way certain genes that we’ve knocked out using CRISPR affect the replication of viruses such as influenza in human cell lines. Because the process is so much easier with CRISPR we can knock out several genes we know are involved in the same biological process, and make multiple, independently generated knock-outs of these genes. That means there’s much less chance of our coming to incorrect conclusions on the basis of just one or two cell lines. It also means it’s much quicker to work out which components of a known biological process are involved in viral replication, and which are dispensable. This would be helpful if, for example, we wanted to make a drug that prevented a particular virus from replicating properly.

The CRISPR-Cas9 knock-out technique is so efficient, it’s possible to disable all the genes in the human genome in the same experiment. If you set things up correctly, you can obtain a pool of cells with the Cas9 gene, each of which has a guide RNA that targets just one of the twenty thousand genes in the human genome. Within two weeks, you can have a vast ‘library’ of around ten billion cells, each with a gene knocked out. We need these huge libraries so that any given gene will have been disabled in many different ways; it improves the statistical power of the experiment. One application of this is to expose cancer cell lines to a chemotherapy drug. Most of the cells will die, but those that survive will be the ones that have lost genes essential for responding to this particular chemotherapeutic agent – very helpful information if you are trying to come up with ways to stop cancer cells becoming resistant to drugs.

It’s also possible to look at which genes are required for a cell to survive. Many of these essential genes have known functions: the ones involved in DNA replication, for example. Several research groups have analysed the genes required for the replication of a number of human cell lines. As well as the obvious ones, they discovered a large number of genes with completely unknown functions that are nonetheless essential for cell survival. There’s still a lot of cell biology we not only don’t understand, but don’t know we don’t understand. Techniques using CRISPR-Cas9 to disrupt genes in cells that we can study in the lab are still being refined, but are rapidly becoming routine. Techniques involving massive genome-wide libraries of CRISPR knock-outs are still tricky, time-consuming and expensive, but they are immensely powerful and hugely informative.

As well as knocking out entire genes, CRISPR can be repurposed to perform more sophisticated tasks. For example, guides can be designed to make two cuts in the same gene, chopping out a specific portion. This can be used to investigate the function of a particular part of a gene, and in principle could be used to get rid of a faulty part. You could then try to paste something else in: part of a different gene, or a synthetic correction – a patch – to correct the faulty gene. Alternatively, you can make a mutant Cas9 that lacks its cutting function. One ploy we have used is to bolt onto that version of Cas9 proteins that activate other genes. This means you can design guide RNA sequences that individually target each gene in the human genome for activation – the opposite of a knock-out. This enables you, for example, to find genes that protect against chemotherapy or a virus, or to discover the genes that when turned on cause the cell to commit suicide. Cell suicide is important to avoid cancer and combat infection (a virus can’t replicate in a dead cell).

With CRISPR-Cas9 techniques we can kill genes, switch them on and, if we are lucky, replace bits of one gene with another. It doesn’t stop there: the guidance system can be employed to perform almost any function that can be bolted onto a protein, and many research groups are exploring such possibilities. CRISPR has accelerated our progress in understanding fundamental biological mechanisms and will help us design new drug therapies. Will it be widely used as a treatment itself, or will it go the way of d’Herelle’s dream of phage therapy? It certainly offers many advantages over current gene therapies, but it doesn’t solve the big problem of gene delivery. If we are engineering cells in a petri dish, we can easily get genes into them using a viral delivery system. But our cells have evolved powerful mechanisms to resist viral infection, and the physical barriers to delivering genes to whole organs are considerable. It’s likely that CRISPR gene therapy will soon have a role to play in the treatment of disorders of white blood cells, for example: bone marrow can be removed from a patient, CRISPR-modified using specially designed viruses, and returned to the patient. My patients with genetic kidney diseases, however, are unlikely to be significantly helped by CRISPR in the near future, though it’s possible the new biology we discover could lead to new therapies.

For those of us who once spent months or years persuading even one gene to behave itself as instructed, CRISPR excites an eager, near childish joy. The first time my German postdoc and I got results back from genome-wide CRISPR screens, we stared at the results for a few moments to check we weren’t hallucinating, then burst out laughing and high-fived each other – highly uncharacteristic behaviour for both of us. CRISPR is a scientist’s chocolate factory, with pitfalls for the greedy. It isn’t just big news for scientists, it’s big business, and rival institutions are engaged in an unseemly squabble over the key patents – in the latest round, the claims of MIT and Harvard won out over those of UC Berkeley.

Jennifer Doudna, who works at Berkeley, made some of the seminal discoveries in the field and is one of a handful of people who could plausibly get a Nobel Prize for CRISPR. She has written a breezy popular science book about it, which explains the molecular details of CRISPR in an engaging way.* The final chapter looks at the prospects for using CRISPR to edit human embryos. The first possibility is that certain genetic diseases could be eliminated. Would this be safe? Who would benefit? Given the commercial interests at stake, is it possible we will create a genetic underclass? Should parents be allowed to edit their future children’s genomes? Whenever there is a breakthrough in genetic engineering, there are inevitably fears that it may be used irresponsibly in human reproduction. The nature of the arguments hasn’t been changed by CRISPR, but it’s more urgent that we address them. Doudna has thought about the issues, but it isn’t clear that she goes beyond paying lip service to some of the objections. It seems to be a glib remark from a student – ‘But what if we don’t edit the human germline?’ – that persuades her it’s all OK.

Enthusiasts for human germline editing got a fillip in August last year when a report in Nature claimed success in editing a mutant gene responsible for a serious heart disease in human embryos using CRISPR. This apparently wasn’t accompanied by any unintended effects on other genes. The report led worldwide news bulletins and there were triumphant front-page headlines. Too good to be true? Several leading scientists in the field think so, and have produced a polite rebuttal of the central claims. There’s no suggestion of fraud; it’s merely that less exciting interpretations of the published data seem more plausible: there may have been unintended deletion of genes, for example – an undesirable off-target effect. These doubts have received hardly any coverage. Most reporting on CRISPR oversells the technology; it’s an amazing research tool, but not a panacea. Doudna isn’t alone in reaching for references to Brave New World. She reckons that humans will be divided into different genetic castes a lot sooner than 2540. I’m not sure whether she thinks this desirable or merely inevitable; I’m sure it’s neither.

Send Letters To:

The Editor
London Review of Books,
28 Little Russell Street
London, WC1A 2HN

letters@lrb.co.uk

Please include name, address, and a telephone number.

Letters

Vol. 40 No. 6 · 22 March 2018

Rupert Beale writes that Felix d’Herelle discovered bacteriophages in the course of distilling maple syrup in Quebec in 1917 (LRB, 22 February). In fact the work with maple syrup was carried out in 1898, and d’Herelle did produce a potable alcohol. He followed that up with another distillation project in 1902, of bananas in Guatemala, also a success. But I digress. In 1915, d’Herelle had been working on a severe outbreak of haemorrhagic dysentery at Maisons-Lafitte in 1915. He was with the Pasteur Institute. It took until 1917 for him to describe what he called an ‘invisible microbe, antagonistic to the dysentery bacillus’ (the quotation is from William Summers’s excellent book, published in 1999, Felix d’Herelle and the Origins of Molecular Biology). D’Herelle began to study the typhoid bacterium, initially in mice. In 1919 he published his research on typhoid in chickens as well as humans in the journal Comptes Rendus de l’Académie des Sciences. He continued to prepare phages for use around the world, to combat plague, for instance, in Egypt and India, until the advent of antibiotics in the 1940s.

Purky Kidder
Nashville, Tennessee

send letters to

The Editor
London Review of Books
28 Little Russell Street
London, WC1A 2HN

letters@lrb.co.uk

Please include name, address and a telephone number

Read anywhere with the London Review of Books app, available now from the App Store for Apple devices, Google Play for Android devices and Amazon for your Kindle Fire.

Sign up to our newsletter

For highlights from the latest issue, our archive and the blog, as well as news, events and exclusive promotions.