In the latest issue:

Real Men Go to Tehran

Adam Shatz

What Trump doesn’t know about Iran

Patrick Cockburn

Kaiser Karl V

Thomas Penn

The Hostile Environment

Catherine Hall

Social Mobilities

Adam Swift

Short Cuts: So much for England

Tariq Ali

What the jihadis left behind

Nelly Lahoud

Ray Strachey

Francesca Wade

C.J. Sansom

Malcolm Gaskill

At the British Museum: ‘Troy: Myth and Reality’

James Davidson

Poem: ‘The Lion Tree’

Jamie McKendrick


Jenny Turner

Boys in Motion

Nicholas Penny

‘Trick Mirror’

Lauren Oyler

Diary: What really happened in Yancheng?

Long Ling

Science and the StarsM.F. Perutz

Terms and Conditions

These terms and conditions of use refer to the London Review of Books and the London Review Bookshop website ( — hereafter ‘LRB Website’). These terms and conditions apply to all users of the LRB Website ("you"), including individual subscribers to the print edition of the LRB who wish to take advantage of our free 'subscriber only' access to archived material ("individual users") and users who are authorised to access the LRB Website by subscribing institutions ("institutional users").

Each time you use the LRB Website you signify your acceptance of these terms and conditions. If you do not agree, or are not comfortable with any part of this document, your only remedy is not to use the LRB Website.

  1. By registering for access to the LRB Website and/or entering the LRB Website by whatever route of access, you agree to be bound by the terms and conditions currently prevailing.
  2. The London Review of Books ("LRB") reserves the right to change these terms and conditions at any time and you should check for any alterations regularly. Continued usage of the LRB Website subsequent to a change in the terms and conditions constitutes acceptance of the current terms and conditions.
  3. The terms and conditions of any subscription agreements which educational and other institutions have entered into with the LRB apply in addition to these terms and conditions.
  4. You undertake to indemnify the LRB fully for all losses damages and costs incurred as a result of your breaching these terms and conditions.
  5. The information you supply on registration to the LRB Website shall be accurate and complete. You will notify the LRB promptly of any changes of relevant details by emailing the registrar. You will not assist a non-registered person to gain access to the LRB Website by supplying them with your password. In the event that the LRB considers that you have breached the requirements governing registration, that you are in breach of these terms and conditions or that your or your institution's subscription to the LRB lapses, your registration to the LRB Website will be terminated.
  6. Each individual subscriber to the LRB (whether a person or organisation) is entitled to the registration of one person to use the 'subscriber only' content on the web site. This user is an 'individual user'.
  7. The London Review of Books operates a ‘no questions asked’ cancellation policy in accordance with UK legislation. Please contact us to cancel your subscription and receive a full refund for the cost of all unposted issues.
  8. Use of the 'subscriber only' content on the LRB Website is strictly for the personal use of each individual user who may read the content on the screen, download, store or print single copies for their own personal private non-commercial use only, and is not to be made available to or used by any other person for any purpose.
  9. Each institution which subscribes to the LRB is entitled to grant access to persons to register on and use the 'subscriber only' content on the web site under the terms and conditions of its subscription agreement with the LRB. These users are 'institutional users'.
  10. Each institutional user of the LRB may access and search the LRB database and view its entire contents, and may also reproduce insubstantial extracts from individual articles or other works in the database to which their institution's subscription provides access, including in academic assignments and theses, online and/or in print. All quotations must be credited to the author and the LRB. Institutional users are not permitted to reproduce any entire article or other work, or to make any commercial use of any LRB material (including sale, licensing or publication) without the LRB's prior written permission. Institutions may notify institutional users of any additional or different conditions of use which they have agreed with the LRB.
  11. Users may use any one computer to access the LRB web site 'subscriber only' content at any time, so long as that connection does not allow any other computer, networked or otherwise connected, to access 'subscriber only' content.
  12. The LRB Website and its contents are protected by copyright and other intellectual property rights. You acknowledge that all intellectual property rights including copyright in the LRB Website and its contents belong to or have been licensed to the LRB or are otherwise used by the LRB as permitted by applicable law.
  13. All intellectual property rights in articles, reviews and essays originally published in the print edition of the LRB and subsequently included on the LRB Website belong to or have been licensed to the LRB. This material is made available to you for use as set out in paragraph 8 (if you are an individual user) or paragraph 10 (if you are an institutional user) only. Save for such permitted use, you may not download, store, disseminate, republish, post, reproduce, translate or adapt such material in whole or in part in any form without the prior written permission of the LRB. To obtain such permission and the terms and conditions applying, contact the Rights and Permissions department.
  14. All intellectual property rights in images on the LRB Website are owned by the LRB except where another copyright holder is specifically attributed or credited. Save for such material taken for permitted use set out above, you may not download, store, disseminate, republish, post, reproduce, translate or adapt LRB’s images in whole or in part in any form without the prior written permission of the LRB. To obtain such permission and the terms and conditions applying, contact the Rights and Permissions department. Where another copyright holder is specifically attributed or credited you may not download, store, disseminate, republish, reproduce or translate such images in whole or in part in any form without the prior written permission of the copyright holder. The LRB will not undertake to supply contact details of any attributed or credited copyright holder.
  15. The LRB Website is provided on an 'as is' basis and the LRB gives no warranty that the LRB Website will be accessible by any particular browser, operating system or device.
  16. The LRB makes no express or implied representation and gives no warranty of any kind in relation to any content available on the LRB Website including as to the accuracy or reliability of any information either in its articles, essays and reviews or in the letters printed in its letter page or material supplied by third parties. The LRB excludes to the fullest extent permitted by law all liability of any kind (including liability for any losses, damages or costs) arising from the publication of any materials on the LRB Website or incurred as a consequence of using or relying on such materials.
  17. The LRB excludes to the fullest extent permitted by law all liability of any kind (including liability for any losses, damages or costs) for any legal or other consequences (including infringement of third party rights) of any links made to the LRB Website.
  18. The LRB is not responsible for the content of any material you encounter after leaving the LRB Website site via a link in it or otherwise. The LRB gives no warranty as to the accuracy or reliability of any such material and to the fullest extent permitted by law excludes all liability that may arise in respect of or as a consequence of using or relying on such material.
  19. This site may be used only for lawful purposes and in a manner which does not infringe the rights of, or restrict the use and enjoyment of the site by, any third party. In the event of a chat room, message board, forum and/or news group being set up on the LRB Website, the LRB will not undertake to monitor any material supplied and will give no warranty as to its accuracy, reliability, originality or decency. By posting any material you agree that you are solely responsible for ensuring that it is accurate and not obscene, defamatory, plagiarised or in breach of copyright, confidentiality or any other right of any person, and you undertake to indemnify the LRB against all claims, losses, damages and costs incurred in consequence of your posting of such material. The LRB will reserve the right to remove any such material posted at any time and without notice or explanation. The LRB will reserve the right to disclose the provenance of such material, republish it in any form it deems fit or edit or censor it. The LRB will reserve the right to terminate the registration of any person it considers to abuse access to any chat room, message board, forum or news group provided by the LRB.
  20. Any e-mail services supplied via the LRB Website are subject to these terms and conditions.
  21. You will not knowingly transmit any virus, malware, trojan or other harmful matter to the LRB Website. The LRB gives no warranty that the LRB Website is free from contaminating matter, viruses or other malicious software and to the fullest extent permitted by law disclaims all liability of any kind including liability for any damages, losses or costs resulting from damage to your computer or other property arising from access to the LRB Website, use of it or downloading material from it.
  22. The LRB does not warrant that the use of the LRB Website will be uninterrupted, and disclaims all liability to the fullest extent permitted by law for any damages, losses or costs incurred as a result of access to the LRB Website being interrupted, modified or discontinued.
  23. The LRB Website contains advertisements and promotional links to websites and other resources operated by third parties. While we would never knowingly link to a site which we believed to be trading in bad faith, the LRB makes no express or implied representations or warranties of any kind in respect of any third party websites or resources or their contents, and we take no responsibility for the content, privacy practices, goods or services offered by these websites and resources. The LRB excludes to the fullest extent permitted by law all liability for any damages or losses arising from access to such websites and resources. Any transaction effected with such a third party contacted via the LRB Website are subject to the terms and conditions imposed by the third party involved and the LRB accepts no responsibility or liability resulting from such transactions.
  24. The LRB disclaims liability to the fullest extent permitted by law for any damages, losses or costs incurred for unauthorised access or alterations of transmissions or data by third parties as consequence of visit to the LRB Website.
  25. While 'subscriber only' content on the LRB Website is currently provided free to subscribers to the print edition of the LRB, the LRB reserves the right to impose a charge for access to some or all areas of the LRB Website without notice.
  26. These terms and conditions are governed by and will be interpreted in accordance with English law and any disputes relating to these terms and conditions will be subject to the non-exclusive jurisdiction of the courts of England and Wales.
  27. The various provisions of these terms and conditions are severable and if any provision is held to be invalid or unenforceable by any court of competent jurisdiction then such invalidity or unenforceability shall not affect the remaining provisions.
  28. If these terms and conditions are not accepted in full, use of the LRB Website must be terminated immediately.
The Limits of Science 
by Peter Medawar.
Oxford, 108 pp., £7.50, February 1985, 0 19 217744 3
Show More
Show More

Medawar presents an erudite and entertaining account of the limits of science, or mostly the lack of them, as perceived by great thinkers from Francis Bacon to Karl Popper and himself. His arguments are couched in largely epistemological terms which do not arouse my passions, but they stimulated me to think about those limits that affect laymen’s attitudes to science, about the practical limits scientists face in their everyday research, and laymen in their daily lives, and about the limits that affect industrial and public policy.

Medawar argues that science reaches its limits only when we ask ultimate questions of our existence, such as ‘How did everything begin?’ or ‘What are we all here for?’, but many other people’s attitude to science is more affected by its inability to answer the question ‘How should we behave?’ In their view, science has undermined the religious basis of morality and the belief in Heaven and Hell without putting anything in their places. It has given man immense powers over nature without suggesting any ways of improving the nature of man. Many regard these as science’s greatest failings. In his book Chance and Necessity Jacques Monod suggested that scientific truth might become the basis of a new ethics, but he did not spell out how this was to be achieved. Philosophers have shown that science can tell us only what is, and that an ‘ought’ cannot be derived from an ‘is’.

Medawar asks if there is some intrinsic limit to our understanding of the natural world, either cognitive, having to do with our powers of apprehension, or logical, arising out of the very nature of thought. His denial of both kinds of limit may be valid on philosophical grounds, because science has been defined as embracing all those problems that are in principle open to empirical observation and solution, but it is contrary to practical experience. Whatever I did discover I could have discovered years earlier, and many things that I failed to discover I could have discovered if it had not been for my limited powers of apprehension and logical thought, my obtuse blindness to the answers that lay at hand. History shows that even the greatest scientists usually advance in small steps, because the development of new concepts causes them enormous difficulties. For example, in retrospect an experiment on the scattering of alpha-particles from a gold leaf, performed by Geiger and Marsden in Rutherford’s laboratory in Manchester, ‘obviously’ suggested that the mass of the gold atom was concentrated in a tiny nucleus, but so novel and revolutionary was the idea that it took Rutherford more than a year to formulate it. I feel the lack of my own powers of apprehension and logical thought most acutely when I try to think about the evolution of the large biological molecules whose complex structures I have helped to determine, but since an explanation of this would take me deep into chemistry and physics, let me discuss instead some similar riddles that arise when we try to think about the evolution of birds.

I am a firm believer in Darwinian evolution by random mutation and natural selection; my belief has been strengthened by molecular biology, which has given us a detailed picture of the chemical basis of inheritance and of the many different ways by which chance mutations can alter the genetic apparatus. Yet I am baffled when it comes to a simple question like the evolution of birds’ wings. Darwinian evolution is driven by selective pressure, but the problem is that such pressure can act only after a rudimentary function has developed to a stage when it is of survival value. Fossils indicate that birds have evolved from crocodile-like reptiles that started to climb trees. Formation, even of rudimentary wings, would have required many separate mutations in successive generations, but until the wings had become large enough at least to allow these animals to glide from branch to branch, none of them would have made the animals fitter, and consequently there would have been no selective pressure to stabilise these mutations. This kind of enigma arises in the evolution of many other organs.

Even harder to explain is the evolution of bird migration. Warblers spend the summer months in Northern Europe. In the autumn they take off to Africa, either via the Balkans to the Nile Valley, or via Gibraltar to West Africa. They don’t fly in flocks, but singly by night, and birds hatched in Europe and flying south for the first time make the journey alone. How do they find their way? Experiments show that they navigate by the constellations of the stars. Other birds navigate by the sun as well as the stars. Some, perhaps many, also carry a compass in their brain, in the form of tiny crystals of magnetite, and navigate by the magnetic field of the earth. How could this behaviour have evolved? What use was selective pressure for the evolution of an instinct to fly south in the autumn and north in the spring before the evolution of navigation? What use would the evolution of an instinct for navigation by the stars have been to African birds before the evolution of an instinct to seek better feeding grounds in Northern Europe in the summer? How could genetic mutations have led to the crystallisation of magnetite in the brain to serve as a compass? When we think about possible ways of gradual evolution of these instincts, we come up against similar difficulties as in the evolution of wings. Recent observations brought us a small step nearer to an understanding by showing that a very few genetic mutations have been sufficient to produce striking changes in the appearance of certain varieties of maize and fruitflies, which suggests that the same might have been true for the evolution of wings. Even so, I am not sure that our imagination will ever completely fathom processes that have taken nature millions of years to accomplish.

Powers of apprehension and logical thought fail us when we try to explain these wonders of nature, but even if these powers were unlimited, science itself defines intrinsic limits to our perception of the world. In physics, these arise from Heisenberg’s uncertainty principle, which does not allow us to pinpoint the position of an atomic particle without blurring the measurement of its momentum, and vice versa. The principle also states that the shorter the lifetime of an atomic event the more blurred becomes the measurement of the energy associated with it. These restrictions affect many experiments in physics and chemistry. Uncertainties that are less fundamental, but similar in their effects, beset other fields of enquiry such as the study of behaviour in man and higher animals. For example, it has proved impossible to measure children’s innate intelligence, because the contributions of nature and nurture to mental development are inextricably mixed. Behaviour also tends to be affected by the very process of observation: tests of medical treatments can give ambiguous results, because many clinical conditions improve with the patient’s knowledge that he is being treated.

Medawar seems to regard science itself as having no frontier, but this view is not shared by all scientists. Leading physicists have sadly confessed to me that in pure physics there are now no fundamental problems left outside elementary particles. Many ambitious physicists have therefore turned to apply physics to either astronomy or biology. Fifty years ago already the great Danish physicist Niels Bohr advised his pupils that new laws of physics were most likely to be discovered in biology. Some of the young men who followed his advice are among the founders of the new science of molecular biology, but they had to make do with the known laws of physics, and rather elementary ones at that. Of course, Bohr was also wrong in believing that after relativity and quantum mechanics there was nothing fundamental left to be discovered in physics. Amongst other things, he failed to foresee the discovery of phenomena in solids which, though not fundamentally new, were quite unexpected and opened the way to the invention of transistors and high-speed computers, but despite these successes many physicists feel that there is not another wholly new set of phenomena like radioactivity, semi-or superconductivity, still waiting to be discovered.

Until Rutherford succeeded in splitting them, atoms were regarded as the ultimate indivisible units of matter. Since then, physicists have discovered many subatomic particles, suggesting, as some pre-Socratic philosophers thought, that matter might be infinitely divisible, but in fact there is likely to come a day when all subatomic particles will have been discovered. The latest particles, the W and the Z, have been detected at the European High Energy Generator in Geneva, which cost about £500m to build. A much larger accelerator now planned by American physicists is estimated to cost about five times as much. The American Government has not yet approved its construction, but supposing it does, no government or combination of governments is likely to pay for another accelerator costing five times as much again, or £12,500m, especially since none of the subatomic particles discovered during the last forty years have so far found practical applications. Those that are of practical use, the neutron, the positron and the muon, were discovered in the Thirties and Forties without the help of accelerators. On the other hand, high-energy physicists argue rightly that their technology has produced important spin-off for industry, science and medicine, such as the production of more powerful new radiations for the diagnosis and treatment of cancer. This brings us to the applications of science and their possible limits.

In medicine, the past forty years have seen the discovery of drugs against many hitherto incurable diseases. Is this stream inexhaustible? There is no absolute limit to the new drugs that might be discovered as there is to subatomic particles, but their discovery is becoming harder. In 1906, when Paul Ehrlich discovered his magic bullet against syphilis, he called it compound 606, because he and his collaborator had synthesised 605 compounds of arsenic before they hit upon the one that killed the pathogen and left the patient alive. By now drug firms have to synthesise an average of 8000 organic compounds before finding a marketable new drug. The average research and development costs of a new drug rose fivefold in real terms between 1960 and 1975 and now stand at over £50m. This means that only the largest firms can afford them, and then only if they are confident of mass sales. The recently introduced techniques of genetic manipulation may lead to a surge of new types of therapeutic agents, but not necessarily at lower cost.

In agriculture, yields of food grains have increased at an annual rate of 2 to 3 per cent, thanks in part to better pesticides. Since their period of application is limited by the growth of pesticide-resistant strains, the chemical industry continues to search for new ones, but this is becoming progressively harder, just like the discovery of new drugs. The number of compounds chemists had to synthesise to develop one marketable pesticide rose from 1800 in 1956 to about 10,000 in 1976, with a concurrent rise in development costs to the order of tens of millions of pounds. There are no absolute limits to the discovery of new drugs and pesticides, but financial limits are set by the law of diminishing returns.

The huge numbers of compounds that chemists have to synthesise before they find a marketable product accounts for only part of the large rise in development costs. The other part is due to the many additional safety tests made compulsory for new drugs after the thalidomide tragedy, and for new pesticides after the poisoning of birds and animals by DDT. In the USA, the execution of these tests and the official examination of their results has now become so cumbersome that up to ten years may elapse between the patenting and marketing of a new drug, but even after exhaustive tests absolute safety of drugs is beyond the limits of science, because individual responses vary so widely that seemingly harmless drugs like aspirin may kill people who are excessively susceptible to them.

In this field as in others, ignorance of science often goes hand in hand with unlimited expectation of its benefits. It is hard to convince the Pope that science will not be able to continue increasing food production indefinitely for an exponentially growing world population. President Nixon was confident that given enough money, science could find a cure for cancer just as fast as it had put men on the Moon. President Reagan seems to believe that science can provide continued economic growth regardless of the limits of our planet’s resources and environmental tolerance. At this moment, I believe he is wrong in trusting scientists to be capable of developing a system of computer-operated weapons in space that will automatically and reliably destroy hundreds of Soviet missiles within minutes of their launch. Even if it were to prove possible to make the required weapons, and that is still doubtful, the electronic circuits and computer programmes needed to operate them faultlessly and promptly would have to be devised and constructed not by infallible robots, but by men and women whose errors are liable to multiply with the complexity of the system. How often have we read of a space launch failing despite meticulous servicing because of a trivial fault: how much truer will this be of an entire weapons system left unattended in space? To my mind it is important to make the public and political leaders aware of science’s limits as well as its potentialities.

In summary, science cannot improve human nature nor provide a moral code. Individual powers of apprehension and logical thought are limited, and these limits can restrict our understanding of the natural world even when in principle all the facts necessary for our understanding are known. Further, the laws of physics, and the effects of the observer on the observed, place limits on attainable knowledge. Science is also limited in extent: no field of science has an unlimited frontier, even though in biology especially that frontier is still distant. In applied science, limits arise from the law of diminishing returns, and absolute safety can be bought only at infinite expense.

Should adventurous young people then turn away from science because there are no more Everests to be climbed? Certainly not. Some of the climbing may have become harder but there are many challenging mountain ranges still on the horizon. In my own field of molecular biology, the stream of fundamental discoveries shows no signs of drying up. What is more, it is beginning to yield results of practical benefit to medicine. While there may remain few fundamental laws of physics to be discovered, physics is being applied to the invention of undreamt – of advances in medical diagnosis: for example, sophisticated physical instruments now allow us to view a patient’s innards in sections without actually having to cut him into thin slices. The most recent method, an offshoot of high-energy physics called Positron Emission Tomography, lets you watch a person’s brain as he thinks. Thinking needs chemical energy in the form of glucose which the blood supplies and which the brain breaks down. The machine locates the centres of thought by finding the exact positions where this breakdown occurs. If I were writing with my head in one of these machines, it would light up the areas where glucose is being burnt to formulate my concluding sentence, but, fortunately perhaps, a machine that could also read my thoughts looks like being beyond the limits of science.

Send Letters To:

The Editor
London Review of Books,
28 Little Russell Street
London, WC1A 2HN

Please include name, address, and a telephone number.

Read anywhere with the London Review of Books app, available now from the App Store for Apple devices, Google Play for Android devices and Amazon for your Kindle Fire.

Sign up to our newsletter

For highlights from the latest issue, our archive and the blog, as well as news, events and exclusive promotions.