David Kaiser

David Kaiser is writing two books about gravity: a textbook on cosmology, and a history of Einstein’s theory of general relativity.

The Austrian polymath Ernst Mach exhorted his fellow physicists in the early 1880s to recognise that all was not well with their discipline. Two hundred years earlier, Isaac Newton had bequeathed to them a remarkable system of laws which made it possible for them to describe – and predict – the motion of everything from an apple falling from a tree near Woolsthorpe to the orbit of...

Boiling Electrons

David Kaiser, 27 September 2012

A decade ago, digging through a physicist’s archive, I stumbled on a document that has haunted me ever since: a hand-typed table of integrals seemingly little different from the ones I’d kept by me as a student. The familiarity of the contents jarred with the table’s front page. Only 31 copies of the table had been printed, the recipients listed on the cover. The table,...

Short Cuts: The Higgs Boson

David Kaiser, 25 August 2011

Particle physics is at once the most elegant and brutish of sciences. Elegant because of its sweeping symmetries and exquisite mathematical structures. Brutish because the principal means of acquiring information about the subatomic realm is revving up tiny bits of matter to extraordinary energies and then smashing them together. Imagine trying to discern the hidden inner workings of a...

Going Supernova

David Kaiser, 17 February 2011

Twenty years ago, the science writer Dennis Overbye published a marvellous book, Lonely Hearts of the Cosmos, in which he traced the development of cosmology – the scientific study of the universe as a whole – during the second half of the 20th century. The cosmologists in Overbye’s book were lonely for two reasons. They included the last remnants of a generation of...

Diary: Aliens

David Kaiser, 8 July 2010

My mother rarely calls to talk about my research. In April, however, she rang to ask: ‘Do you agree with Stephen Hawking?’ That’s usually an easy question to field. On topics ranging from the behaviour of black holes to the structure of the early universe, a safe answer is yes. But that wasn’t what my mother wanted to know. She wanted to know whether I agreed with the recently retired Lucasian Professor of Mathematics that trying to contact aliens was a bad idea. Any extraterrestrial civilisation that could receive our communiqués and act on them, Hawking warned, might show up on our doorstep, and wouldn’t necessarily be friendly. ‘Such advanced aliens,’ Hawking said, might be ‘looking to conquer and colonise whatever planets they can reach.’ In no time at all, the word spread from Hawking’s voice synthesiser to the world’s blogosphere. Soon even my mother was calling.

Gremlin Fireworks: Atom-Smashing

David Kaiser, 17 December 2009

In October 1993, Congress took its final vote to kill funding for the Superconducting Supercollider. A well-meaning young professor advised me to leave graduate school if the vote went the wrong way. A year or so later he jumped ship to Wall Street, along with many other students and colleagues. With that vote to kill the SSC, Congress cut annual funding for high-energy physics in the United States by half. Support for the field continued to erode, losing ground against inflation, for the rest of the decade.

A x B ≠ B x A: Paul Dirac

David Kaiser, 26 February 2009

Physics became ‘modern’ at breakneck speed. Only 20 years separated Einstein’s formulation of special relativity, in 1905, and the development of quantum mechanics in 1925-26. The two events have attracted rather different kinds of story. Einstein’s achievement is typically portrayed as the epic tale of one man’s obsession. The creation of quantum mechanics, on...

From The Blog
24 March 2014

Astronomers from the BICEP collaboration announced on 17 March that, using a modest-sized telescope near the South Pole, they had detected gravity waves that have been rippling through the cosmos since the Big Bang. This is extraordinary news for our understanding of gravity generally, and for our understanding of how the universe probably evolved during the earliest moments of its history.

From The Blog
19 April 2013

Last month an international team of physicists and astronomers working with the Planck satellite released a remarkable set of baby photos: images of the universe taken with light emitted when it was a mere 378,000 years old, less than 0.003 per cent of its present age.

From The Blog
6 July 2012

I wasn't the only person in the United States who counted an extra reason to enjoy the parades and festivities this week. The announcement at CERN that two independent experimental groups had each collected convincing evidence that the long-sought Higgs particle had been found prompted the physicist and blogger Matthew Strassler to declare 4 July ‘IndependHiggs Day’. I couldn't imagine a better reason for fireworks.

From The Blog
23 September 2011

One of the T-shirts you’ll see quite often around MIT says: ‘Speed limit: 186,000 miles per second. It’s not just a good idea. It’s the law.’ The speed in question is the speed of light, and the law comes from Albert Einstein’s theory of relativity. Relativity is predicated on the notion that the speed of light is unsurpassable, and most of modern physics is predicated on relativity. So this morning’s announcement that a team of physicists at CERN may have measured tiny particles, known as neutrinos, travelling faster than light has the potential to eclipse all other news that ever has or may yet come out of CERN – Higgs particles, supersymmetry and all else combined. The key word, though, is ‘potential’. By the physicists’ own reckoning, their results require a lot more scrutiny before anyone concludes that physics has one fewer leg to stand on.

From The Blog
24 November 2010

Last week a team of physicists based at CERN announced that they had coaxed a handful of elusive antihydrogen atoms into existence: 38 of them, to be exact. Simply creating antimatter is no longer newsworthy; a competing team fabricated tens of thousands of antihydrogen atoms using a different method back in 2002. What’s new about the latest experiment – the result of five years’ work – is that the fragile atoms stuck around for as long as 172 milliseconds: nearly one-fifth of a second, about half as long as the blink of an eye. And when it comes to atoms of antimatter, that is an astonishingly long time.

From The Blog
22 March 2010

Fourteen years in the making, the Large Hadron Collider near Geneva spun to life in September 2008, sending the first batches of protons whirling around its 27-kilometre track at very nearly the speed of light. The goal was to smash the revved-up protons into each other at tremendous energies, mimicking conditions that would have been found moments after the big bang and unleashing new particles and interactions for physicists to scrutinise. The machine came screeching to a halt a few days later. One of the tanks holding liquid helium (to keep the superconducting magnets ultracold) had ruptured. No one could get close to the affected area to inspect the damage or begin repairs until the entire region had been taken off-line and ever-so-slowly warmed up. Fourteen months and £24 million later, the tank had been repaired, new equipment installed to bolster the LHC’s resistance to similar spikes in electrical current, and the entire machine cooled back down to its operating temperature.

Read anywhere with the London Review of Books app, available now from the App Store for Apple devices, Google Play for Android devices and Amazon for your Kindle Fire.

Sign up to our newsletter

For highlights from the latest issue, our archive and the blog, as well as news, events and exclusive promotions.

Newsletter Preferences