The Immortal Coil

Richard Barnett

  • The Correspondence of Michael Faraday Vol. VI, 1860-67 by Frank James
    IET, 919 pp, £85.00, December 2011, ISBN 978 0 86341 957 7

In the summer of 1831, James Woods, master of St John’s College, Cambridge, and Wordsworth’s former tutor, decided that his college should have a portrait of its most celebrated living alumnus. He commissioned Henry William Pickersgill – an apprentice Spitalfields silk-weaver turned Royal Academician – to produce a full-length oil painting of Wordsworth in an appropriately sublime setting, and in the early autumn of 1832 Pickersgill made the journey to Rydal Mount. During the day the poet would sit for the painter beneath an open skylight in the high garret of the house. When the light failed the two men turned to talking and walking in the garden. One evening, just after the sun had set, something flashed across the sky and fell into Rydal Water.

When he returned to London Pickersgill brought with him not only a portfolio of sketches and studies, but also an account of the startling atmospheric disturbance he had witnessed. He sent this to the newly appointed Fullerian Professor of Chemistry at the Royal Institution, Michael Faraday. Faraday replied immediately: Pickersgill’s report had ‘greatly excited’ his curiosity, not least because ‘the meteor or whatever else it might be’ had been witnessed by ‘men of philosophical & correct habits of observation’. Would Pickersgill, or perhaps even ‘Mr Wordsworth’, oblige a natural philosopher by answering a few questions about what they had seen?

Did the meteor appear as a ball or a spark of fire? i.e. was its outline distinct or was it so brilliant that outline could not be perceived. In other words I may say did it look like the moon definite in form or like a large bright fire at a distance quite indefinite except as a centre of light?

Did it distinctly cut ducks & drakes on the surface of the lake? Were its bounds perceived & traced by the eye?

Were any fish killed? Floating afterwards upon the surface[?]

Was there other thunder & lightning before or after?

Questions, questions – 28 of them in this letter alone. It is not usual to assess volumes of correspondence by the relative frequency of particular punctuation marks, but Faraday’s letters teem with erotemes and interrogations. (Many of the question marks are Frank James’s editorial insertions: Faraday tended to overlook them in his haste to move on to the next inquiry.) Faraday asks, and is asked in turn, by Oxford gentleman-geologists and provincial glassworks clerks, by crown princes and loving nieces. He admits his ignorance. He suggests where answers may be found. He frames careful, practical responses, always taking care to stress the limits of his expertise. In some instances, we might wish we knew the questions that sparked his answers. Writing to thank Charles Dodgson for a photographic portrait taken on a visit to Christ Church in January 1861, Faraday offered the following notes on Dodgson’s (lost) queries:

The ammonia comes from the cheese evolved by a slow action analogous to decay. You may see the attempts to explain it in the various works on Organic chemistry.

It has not as yet been clearly proved that the Sun does put a fire out – but such a power has been supposed to exist in the actinic rays which the luminary sends forth[.]

I do not know ‘Euere d’or fin’.

And in a very few places we can witness Faraday losing his temper with this seemingly endless barrage of requests, as in the unpunctuated pique of his reply to William Tierney Clark, engineer to the West Middlesex Water Company, in 1831: ‘You seem to imagine that I can answer all sorts of questions and that too when you put them almost in the manner of riddles for you tell me nothing relative to the green substance which you sent me or where it came from or under what circumstances found[.]’

All this from a man who was the archetype of a heroic loner according to his earliest biographers, John Tyndall, his friend and colleague, and J.H. Gladstone, a successor in the Fullerian chair. Tyndall and Gladstone gave their readers an alchemist for the age of steam, an inspired and dogged experimenter who found his greatest happiness in the solitude of the Royal Institution’s basement laboratory. James’s distinctive achievement in editing these letters – of which this is the sixth and final volume – is to reconnect the circuits of Faraday’s social and professional life in what Iwan Rhys Morus called ‘the electrical century’. Faraday is seen at work, moving between the worlds in which his private experimentation and his public science were embedded. He worries over the preparation of Friday Evening Discourses for the RI. He analyses white lead paint for Trinity House, the Tudor corporation that maintained Britain’s necklace of lighthouses. During the Crimean War, he advises the Admiralty on the feasibility of an attack on the Baltic port of Cronstadt, using ships filled with four hundred tonnes of burning sulphur. He exchanges ideas, papers and compliments with Pickersgill, Dodgson, the chemist Justus von Liebig, the geologists Louis Agassiz, William Buckland, Charles Lyell and Roderick Murchison, the astronomer John Herschel, the philosopher William Whewell, the philanthropist Angela Burdett-Coutts, the ‘Enchantress of Numbers’ Ada, Countess of Lovelace, and many others.

The full text of this book review is only available to subscribers of the London Review of Books.

You are not logged in