« | Home | »

The Coldest Place in the Universe

Tags:

Fourteen years in the making, the Large Hadron Collider near Geneva spun to life in September 2008, sending the first batches of protons whirling around its 27-kilometre track at very nearly the speed of light. The goal was to smash the revved-up protons into each other at tremendous energies, mimicking conditions that would have been found moments after the big bang and unleashing new particles and interactions for physicists to scrutinise.

The machine came screeching to a halt a few days later. One of the tanks holding liquid helium (to keep the superconducting magnets ultracold) had ruptured. No one could get close to the affected area to inspect the damage or begin repairs until the entire region had been taken off-line and ever-so-slowly warmed up. Fourteen months and £24 million later, the tank had been repaired, new equipment installed to bolster the LHC’s resistance to similar spikes in electrical current, and the entire machine cooled back down to its operating temperature.

Late in November 2009, the laboratory team celebrated a new world record: they had achieved the highest-energy particle interactions ever recorded in an earth-bound accelerator, edging past the previous record set by a smaller machine at the Fermi National Accelerator Laboratory in the United States. (They’ve surpassed their own record more than once since then, most recently last Friday. Even that, however, was considerably lower than the anticipated peak energy for which the LHC had been designed.)

Once again disappointment eclipsed the momentary cheer. The lab recently announced that it will only be able to operate the LHC at half-capacity until the end of 2011, when it will take the machine off-line for a new round of delicate and costly repairs, which could easily last a year or more. The culprit again appears to be electrical shielding around the delicate superconducting magnets.

With the LHC operating at half its anticipated energy, physicists could still get lucky and find, for example, some evidence for a new type of particle that could account for the ‘dark matter’ enigma. Astronomers have known for decades that some form of matter, inherently different from the familiar atoms and atomic constituents that surround us, seems to be filling the universe, affecting the rates at which galaxies spin. This stuff, whatever it is, can act on ordinary matter gravitationally, but it doesn’t seem to condense into stars or light up: it remains dark. The most recent astrophysical measurements indicate that there should be about five times as much dark matter in the universe as ordinary matter. Theoretical physicists have had little trouble dreaming up exotic candidates for what it might consist of; to date, however, no one’s been able to detect any actual particles. With a bit of luck, even a hobbled LHC could change that.

Most of the terrain that particle physicists are most eager to explore, however, lies at energies greater than the limit at which the LHC will operate for the coming months. So we wait in hope that the full-strength LHC will enable better insight, some time off in the fast-receding future.

It’s not surprising that we have to be patient. The LHC is arguably the single most complicated machine ever constructed. As scientists working on the project have pointed out, the LHC is its own prototype; of course frustrating and unanticipated glitches will interrupt operations. Let’s not forget the sheer audacity behind this hulking machine. Buried 100 metres below the ground, the full length of the 27-kilometre beamline must function flawlessly at temperatures colder than outer space. Ever since the Big Bang, the universe has been cooling. The average temperature of empty space today is 2.8 degrees above absolute zero. (Ordinary room temperature is about 300 degrees above absolute zero.) The inside of the LHC, when functioning properly, hums along nearly a full degree colder than the coldest remnants of the Big Bang, making the massive machine one of the coldest places in the entire universe. With enough luck, patience and money, it may yet help physicists decipher some of the most compelling mysteries of our universe and the fundamental particles and forces that hold it together.

Comments on “The Coldest Place in the Universe”

  1. A.J.P. Crown says:

    For a rap explanation of what the Large Hadron Collider’s doing at CERN, here’s a video by CERN’s own Kate McAlpine.

Comment on this post

Log in or register to post a comment.


  • Recent Posts

    RSS – posts

  • Contributors

  • Recent Comments

    • rm1 on Divided Britain: The anti EU vote had a variety of origins, but progressives need to realise that wanting to have a say over the size of the UK's population is a legit...
    • Higgs Boatswain on Divided Britain: One of the many interesting findings released by the Migration Observatory at Oxford University in its report last year on "UK Public Opinion Towards ...
    • DJL on What will happen now?: The defence of Jeremy Corbyn in the third paragraph is really astonishing. No-one denies that the EU is a capitalist club, but so is the UK, and a wor...
    • Graucho on What will happen now?: The first order of the day for the labour party is to replace Jeremy Corbyn with Gisela Stuart as leader. Winning national campaigns is item number on...
    • Allan House on The Politics of Hate: Philip, much as I enjoy the opportunity to knock Thatcher and to promote better mental health services, I can't see how you can possibly know what sor...

    RSS – comments

  • Contact

  • Blog Archive

Advertisement Advertisement